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Synthesis of Rhenanite Apatitic Calcium Phosphate Biphasics for Skeletal Repair

orthopedic cements, such high resorption rates with calcium phosphates have only been encountered
when the tested (in vivo) materials comprised nanoapatites [25].

The presence of the noncrystalline calcium phosphate phase in bones has been detected even by
the very first electron microscope studies [26]. The earlier work of Posner s/ al. [27-341 set the
foundation for the synthesis and characterization of amorphous or poorly-crystallized calcium
phosphate powders. The cytoplasmic calcium phosphate mineral was found to have a structure built up
of close-packed ion clusters of about l0 A similar to those of Cae(PO4)6 present in synthetic
amorphous calcium phosphates. Short-range order existed in these amorphous clusters (i.e., Posner
clusters) but no long-range order was detected as crystalline hydroxyapatites have [35]. The work of
Eanes ef al. p5-a2l and Rey et al. [24,43-51] on the preparation of poorly-crystallized calcium
phosphates should also be underlined in this context.

B-Rhenanite (p-NaCaPOa). is an alkali calcium orthophosphate, which was recently shown to
support cellular proliferation together with expression ofosteogenic markers at a level higher than p-
TCP [52]. and NaCaPO+ was, therefore, suggested to possess a higher potency to enhance osteogenesis
than B-TCP. Ramselaar et al. [53-56] were the first to investigate the biodegradation rate ofNaCaPOr
implants in direct comparison to HA and p-TCP from six weeks to three months rn vivo. Knabe et ul.

[57] noted the remarkably high solubility (l 0 g per liter of HzO at pH 7 [53]) of NaCaPO+ samples in
a comparative set of in vitro rat bone marrow cell culture tests performed on a number of calciunl
phosphates. Suchanek et al [58] discovered the formation of NaCaPOa interphase layers of high
biocompatibility during the hot pressing ofhydroxyapatite and bioactive glass powders together. Glass
ceramics which contained NaCaPO+ as the crystalline phase were also reported to be bioactive [59-61].

On the other hand. "Rhenania process" is a well-known procedure mostly used in the fertilizer
industry to obtain a soluble phosphate material [62]. In this process. the natural mineral of
hydroxyapatite was mixed with NazCOr and SiOz whereas the molar ratio of NazCO:/PzOs fixed at 1.0.
SiOz was added to prevent the occurrence offree CaO in the sintered product. These powder mixtures
were then ground together and calcined in a rotary kiln at about 1000'-1200'C for about few hours.
The calcined material was then ground to the desired particle size range. Rhenanite, NaCaPOa, ofhigh
solubility, has been the major phase in the final product of the Rhenania process [62].

Resorbable. granular bone graft substitutes based on NaCaPOa formulations have already been
commercialized and marketed for the orthopedic surgeons 163,641. Self-setting cements based on
NaCaPO+ are also available for the repair of bone defects [65]. Nevertheless, the powders of such
products have been produced by high-temperature (>l 100'C) processes [63].

The motivation for the present study stems from our interest in developing a robust synthesis
route for the manufacture of biphasic nanopowders of NaCaPO+ and carbonated, apatitic calcium
phosphate using temperatures less than 700"C [66]. Apatitic calcium phosphate powders rapidly lose
their carbonate ions when heated at a temperature higher than 70C.C 1671.

Therefore, our experimental approach to that end was framed around the following
straightforward supposition: "amorphous or poorly-crystallized calcium phosphate powders are known
to consist of nanoparticles of apatitic calcium phosphates 1241, and if they were synthesized in the
presence of a significant amount of aqueous Na- ions, then upon calcination at relatively low
temperatures, the resultant powders should be a biphasic mixture of NaCaPOa and apatitic calcium
phosphate." This work reports the preparation ofnanosize calcium phosphate precursor powders that
are able to transform into biphasic mixtures of p-NaCaPO+ and apatitic calcium phosphate upon low-
temperature (3 00'-600"C) calcination.

EXPEzuMENTAL PROCEDURE
Rhenanite-apatitic CaP biphasics: The Na-containing poorly-crystallized apatitic calcium

phosphate powders were synthesized by a procedure inspired by the work of Lee et a/ [68]. Two
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Table I Results ofICP-AES and C analyses (in weighP/o. average of3 runs)
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Fig 1 (a) XRD and (b) FTIR traces of fieeze-dried CaP precursors

The SEM morphology of the freeze-dried powders was shown in Figure 2a TG/DTA/DSC
anal-v-ses ofthe freeze-dried CaP precursors (Figure 2b) indicated that upon heating to 155"-160"C the
samples first lost around 7.57o oftheir initial weight. This corresponded to the adsorbed rvater.

!l
" t ;Po. l l
I

500

400

3@

200

1 m

0

t

^ t  {
9 €

-e .S
E

-2

Fig. 2 (a) SEM rnicrograph and (b) '|G-DTA-DSC 
traces of freeze-dried CaP precursors

Therefore, the water content of the precursor powders was deduced to be around 7 to 7.5Yo. With
continued heating to 415"C. another gradual w-eight loss of about 2.596was obsened- and this was
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probably due to the volatilization of the remnants of nitrate ions. Characteristic lR bands for nitrate

ions rvere to be found at I 440- I i00 and I 070- t 030 crn-r J721. but in the IR spectra of Figure l b it was

quite dilficult to identily those nitrate bands due to severe overlapping with the phosphate and
carbonate bands over the same rzurge. However. the weak bands at around 2200 to 2030 cnit in Figure

lb can be ascribed to the nitrates [73]. Further heating at above 415"C, up to 650"C, displayed the
removal ofcarbonate ions that uas accompanied w-ith a u'eight decrease ofaround -5 ut7o. bringing up

the total weight loss to 15%.640"C was the temperature when one reached constant weight (Fig 2b)
p-Rhenanite. i e., p-NaCaPO4, phase in these gel precursors started to crystallize upon lon-

temperature calciriation ofthe samples over the temperature range of 300' to 600'C. Especially. the

DSC spechum given in Fig. 2b showed that there tr€re two exothermic events takiug place o','er the

temperatu€ range of 440" to 570'C. The starling points of these exothermic events w'ere indicated

with arrows in Fig. 2b. It should be noted that DSC is a dynamic process taking place at a heating rate

of 5'C/min. and under isothermal heatings the starting points of those exothermic events would be

slightly lower than those indicated b-v the TG/DTA/DSC spectra. XRD spectra of Figure Ja showed the

crystallization of NaCaPO.r in a matrix of apatitic calcium phosphate. B-NaCaPO+ (occasionally it nra-v
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Fig. 3 (a) XRD and (b) FTIR traces ofcalcined CaP precursors

also be lwitten as CaNaPOa) has an orthorhombic (space group Pnam (62)) unit cell with the lattice

pararneters of a-6.797, b=9.165. and c:5 406 A [74]. This phase (which will transform into u-

NaCaPOr at 650"C) is also isostructural q'ith F-KrSO+. The most straightforu.ard u'ay of synthesizing

Dfrase-pure NaCaPO.r po*ders can be the solid-state reactive firing of the powder mixtules (in a 1:2:2
molar ratio) of Na:co-r, cacor and (NHn):HPo.r at 900"-950'c (see below) [74]. Hou'ever. such a
synthesis route (which involves the formation of liquid phases upon melting of first (NH4)rHPO4 ancl
then Na2CO,r) will not be able to -vield nanosize, therefbre, high surface area and high surf'ace reactivit.v
po*ders [75]. The peaks denoted by * (and their respective hkl retlections) were those of F-NaCaPOq,
and the tq'o-theta positions of such peaks were in close agreement with those given in ICDD PDF 29-

1193. Upon heating at 600"C, CaP gel precursors of this stud-v crystallized about 40t3Vo B-NaCaPOE.
This value u'as calculated from the data of Fig. 3a by using the relative intensity ratio of the nost

intense peak ofhydroxyapatite (at 3 1.78" 20) to that ofNaCaPO+ (at32.59" 20). The samples heated at

600"C for 6 hours can therefore be named as 40% NaCaPOq-60Vo HA biphasic biomaterials.
FTIR traces of the same, calcined samples uere depicted in Figure 3b CaP precursors calcined

even at the low temperature of 300'C were able to exhibit the characteristic OH' stretching vibration at
3572 cm-r. and this band became more pronounced with the increase in calcination temperature at or
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Grain sizes directly measured from the SEM micrographs. as well as the respective surface areas of
these powders, are given in'Iable 2.

Table2 Grain sizcs and surface areas o1'oowders
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Sample Grain size (nm)
Frreze-dried 45 + 10
300'c 60 + l0
400"c 100+ t0
500 'c  150+20
600'c 300 + 70

Surface area (m'lg)
1 2 8 + 5
7 9 + 4
7 0 + 5
5 3 + 3
3 4 + 3

Even after light calcination at temperatures from 300'to 600"C. these materials retained their initially
small grain sizes still in the nano- or submicron-range These surface area data were quite comparable

to those reported by Somrani et al l51l in a study on the thermal evolution of poorly-crystalline

apatitic calcium phosphate powders produced by using Ca-nitrate tetrahydmte and di-ammonium
hydrogen phosphate as the starting water soluble reagents, in the absence of any Na ions in their
precipitation solutions Apatitic calcium phosphate samples of Somrani et ul l51l decomposed into

crystalline tricalcium phosphate upon calcination. Freeze-dried samples ofthe current study consisted
of (as shown in the nricrographs of Figs. I and 2) particles (or moieties) having a needlelike
morphology with average dimensions of I 0 (thickness) and 70 (length) nanometer These are very well
within the size range of bone apatite cryslals, which were documented by using electron nricroscopy

for more than 5 decades ago [27,85]. Johansen and Parks [86] reported that bone apatite crystallites

were platelike in shape with dimensions 400 x 200-350 x 25-50 A. Upon calcination of the samples of
this study, those initially plate- or needle-like, longitudinal moeities present in the freeze-dried
powders (Fig. 2a and not shown TEM data) tended to form more or less equiaxed or globular grains
(Fig a). Such a tendency of nanosize globule formation upon heating can also be taken as a sign of
those moieties (Fig. 2a) actually being comprised ofvery much smallerparticles- Indeed, early studies
by Molnar [87. 88] suggested that bone crystals are composed of chains of tnicrocrystals fused in an
end-to-end relationship. An X-ray diffraction study by Posner e1 a/. [89] reported that the largest
dimension of the bone apatite crystals was about 100 A. and those apatitic crystallites should be
regarded as a mosaic of microcrystals rather than as a continuously uniform. single crystal [3 | l. l 'he

sodium-doped calcium phosphate gel precursors of this study [enthused by the work of Refs. 24, 48.

68] consisted of poorly-crystallized apatitic microcrystals very similar in dimensions and appearance to
those of bone mineral

Nakahira et al. [90], in a study 0f testing the applied magnetic field on the bioactivity of
hydroxyapatite, reported the formation of NaCaPO+ as a second phase in 10% NaHCO:-rnixed
hydroxyapatite bioceramic samples upon sintering those at 1000"C These authors blended the
hydroxyapatite and NaHCO3 @I l0o/o level) powders by using a conventional ball-mill, followed by
conpaction- cold isostatic pressing and sintering. Nakahira et al. f9ll,also tested the bioactivity of
those l000"C-sintered samples by soaking them. at 37'C, in SBF (synthetic body fluid 191,921)
solutions from 4 to 7 days. It is quite interesting to note here that. under the identical SBF soaking
conditions, according to Nakahira et al. [90]. while the pure hydroxyapatite samples (with no magnetic
field application) were not showing any bonelike CaP deposits on their surfaces, NaCaPOa-containing
samples were covered with a high abundance of such deposits. This was again attributed to the higher
bioactivity ofNaCaPO+ phase than that ofpure hydroxyapatite [90, 93] Although we did no1 include
an SBF-soaking study in this manuscript, the strong evidence brought upon by the work ofNakahira el

Advances in Bioceramics and Porous Ceramics 157

"r  600"C



synthesis of Rhenanite Apatitic carcium phosphate Biphasics for skeretar Repair

3NaCaPOa @q) + 2Caln (aq) + H:o (aq) -+ ca5(po4roH (4q) + 3N a+ (aq) + H. (aqt) (I ).

The solid-state reactive firing (SSRF) process we used [74] in this sludy to produce Nacapo+powders uas quite robust and 
|:I*k Elfthesizing large quantities of this substance, Figures 5aand 5b respectively showed the XRD and FTIR traces oiNucupon produced.
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Kangasniemi et al. [95] prepared p-rhenanite powders by sintering stoichiometric mixtures ofcaHPoa and Na:cor at 1300'c. followed by sievinj the ground sintered chunks to a size below 45pm' and used those later as crystalline additives lfrom z0 to 30 wt%) in their experimental bioactiveglass compositions. The same authors were the; ."poit.a in a separate rirav'iiiJ rr," dissolutionbehavior ofcrystalline p-rhenanite- or crystalline HA-containing bioactive glasses soaked in SBF from5 hours to 6 days. Kangasniemi el al. [96] concluded that the p-1hgna6i"-"l"Ji"i"g.omposites had avew positi's effect on the rate of apatitic ilaP fomation on the surfaces of samples iakeo in ssF.
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The earlier but quite comprehensive work ofRamselaar el al [54-56] should be taken as a good

reference for the strong potential of p-rhenanite in developing resorbable or so-called osteoinductive

calcium phosphate bioceramics. The in vivo canine studies performed by Ramselau et al. 156l
demonstrated that statistically more bone deposition occurred on p-rhenanite particles than on

The osteoinductive character reported t97-1001 for the biphasic B-TCP (40%) and HA (60%)

biomaterials may also be expected for the B-rhenanite-HA materials ofthis study. Finally, to validate

the above speculation and the clinical uscfulness ofthe B-rhenanite + HA biphasic bipmaterials ofthis

work in vivb studies must be performed, which we plan to report in a follow-up study
The highly soluble component (i.e., NaCaPO+) of these new biphasic mixtures, under the in

vivo action ofosteoclasts, is assumed to supply Ca2* ions. as well as hydrogenated phosphate ions, to

the surrounding tissues upon implantation. Such materials can, therefore, be expected to act like an

osteoinductive stimulant in the body.

other hand, was coined to NaCaPO+, for the first time, by Spencer [102].

CONCLUSIONS

Sodium-doped calc.ium phosphate precursors were produced at room temperature by using a

robust aqueous synthesis procedure invo'lving the use of Na2HPo+, NaHCOl, and Ca(NO:)z.4HuO. The

pr""ursoi. formed at the physiological pH of7.4 were in the form ofa gel. Upon freeze-drying, these

precursor gels were found to consist of poorly-crystallized, nanosize apatitic calcium phosphates with a

iurface area in excess of 125 mzlg. Calcination of these samples in a static air atmosphere over the

temperature range of 400" to 600"C for 6 hours led to the production of p-rhenanite (I"laCaPO+) and

hydioxyapatite biphasic biomaterials for the first time. Calcined powder samples had surface areas

over the range 30 to 80 m'lg. and consisted of nanosize grains.
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